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Abstract

This paper considers the problem of aggregation in the case of large linear dynamic panels,

where each micro unit is potentially related to all other micro units, and where micro innovations

are allowed to be cross sectionally dependent. Following Pesaran (2003), an optimal aggregate

function is derived, and the limiting behavior of the aggregation error is investigated as N (the

number of cross section units) increases. Certain distributional features of micro parameters

are also identi�ed from the aggregate function. The paper then establishes Granger�s (1980)

conjecture regarding the long memory properties of aggregate variables from �a very large scale

dynamic, econometric model�, and considers the time pro�les of the e¤ects of macro and micro

shocks on the aggregate and disaggregate variables. Some of these �ndings are illustrated

in Monte Carlo experiments, where we also study the estimation of the aggregate e¤ects of

micro and macro shocks. The paper concludes with an empirical application to consumer price

in�ation in Germany, France and Italy, and re-examines the extent to which �observed�in�ation

persistence at the aggregate level is due to aggregation and/or common unobserved factors. Our

�ndings suggest that dynamic heterogeneity as well as persistent common factors are needed for

explaining the observed persistence of the aggregate in�ation.
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1 Introduction

Nearly every study in economics must implicitly or explicitly aggregate: over time, individuals

(consumers, �rms, or agents), products, or space, and usually over most of these dimensions. It is

therefore important that the consequences of aggregation for the analysis of economic problems of

interest are adequately understood. It is widely acknowledged that aggregation can be problematic,

but it is often ignored either by resorting to the concept of a �representative agent�, or by arguing

that �aggregation errors� are of second order importance. However, there are empirical studies

where aggregation errors are shown to be quite important. For example, Hsiao et al. (2005)

using Japanese aggregate and disaggregate money demand data show that they can obtain stable

money demand equations only if they work with disaggregate data, and trace the fundamentally

di¤erent conclusions reached using aggregate versus the disaggregate data to the prevalence of

parameter heterogeneity. Altissimo et al. (2009) �nd that aggregation can explain a signi�cant

part of observed persistence in the consumer price in�ation. Other examples include Imbs et al.

(2005) who show that the estimated persistence of real exchange rates falls dramatically when the

aggregation is taken into account, contributing to a long standing debate on the empirical validity

of the Purchasing Power Parity hypothesis. Similar to the Lucas critique, Geweke (1985) argues

that ignoring the sensitivity of the aggregates to policy changes seems no more compelling than

ignoring the dependence of expectations on the policy regime.

There are several di¤erent, but related aspects of the aggregation problem that have been stud-

ied in the literature. Granger (1990) and Stoker (1993) provide early surveys. Theil (1954), Lewbel

(1994), and Pesaran (2003) consider the problem of deriving an optimal aggregate function. In

addition, Pesaran (2003) discusses estimating the average long-run micro e¤ects and mean lags

of the autoregressive distributed lag (ARDL) micro models from aggregate data. The problem of

aggregation of a �nite number of independent autoregressive moving average (ARMA) processes is

considered, for example, by Granger and Morris (1976), Rose (1977), and Lütkepohl (1984). The

problem of aggregating a large number of independent time series processes was �rst addressed

by Robinson (1978) and Granger (1980). Granger showed that aggregate variables can have fun-

damentally di¤erent time series properties as compared to those of the underlying micro units.

Focusing on autoregressive models (AR) of order 1, he showed that aggregation can generate long
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memory even if the micro units follow stochastic processes with exponentially decaying autocovari-

ances. The identi�cation and estimation of micro parameters or some of their distributional features

from aggregate relations is another key issue of concern in the aggregation literature. Theil (1954)

was the �rst to consider this problem in the context of static micro relations. Robinson (1978)

considers the problem of estimating moments of the distribution of AR(1) micro coe¢ cients, but

excludes the possibility of a long memory when deriving the asymptotic distribution of his pro-

posed estimator. The role of common factors and cross-section dependence in aggregation was

�rst highlighted by Granger (1987), and further developed and discussed in Forni and Lippi (1997)

and Za¤aroni (2004). Another important issue of concern is the possible e¤ects of aggregation on

cointegration. The problem was initially considered in Pesaran and Smith (1995) and Phillips and

Moon (1999). Trapani and Urga (2010) consider a more general setting and provide necessary and

su¢ cient conditions for the aggregate cointegration to hold when the underlying micro units coin-

tegrate. Lastly, the aggregation problem has also been studied from the perspective of forecasting:

is it better to forecast using aggregate or disaggregate data, if the primary objective is to forecast

the aggregates? Pesaran, Pierse, and Kumar (1989) and Pesaran, Pierse, and Lee (1994), building

on Grunfeld and Griliches (1960), develop selection criteria for a choice between aggregate and

disaggregate speci�cations. Giacomini and Granger (2004) discuss forecasting of aggregates in the

context of space-time autoregressive models. Cross section aggregation of vector ARMA processes

and a comprehensive bibliography is provided in Lütkepohl (1987). Our literature review is by no

means comprehensive and it highlights only the main aspects of the aggregation problem.1

In this paper we consider the problem of aggregation in the case of large linear dynamic panels,

where each micro unit is potentially related to all other micro units, and where micro innovations

are allowed to be cross sectionally dependent. In this way the earlier literature on aggregation of

independent dynamic regressions is extended to aggregation of dynamic models with interactions

and cross section dependence. In particular, we allow for various interconnections across the indi-

vidual units, relax the assumption that micro coe¢ cients are independently distributed, and allow

for a general pattern of cross section dependence of micro innovations, which can be either strong or

weak. Following Pesaran (2003), an optimal aggregate model is derived, and the limiting behavior

1There are also a number of papers on the aggregation of nonlinear models: Kelejian (1980), Stoker (1984), Stoker
(1986), and Garderen et al. (2000), all focussing on the aggregation of static non-linear micro models.
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of aggregation error is investigated as N (the number of cross section units) increases. Certain

distributional features of micro parameters are also identi�ed from the aggregate relation. The

paper then establishes Granger�s (1980) conjecture about the long memory properties of aggregate

variables from �a very large scale dynamic, econometric model�, and considers the time pro�les of

the e¤ects of macro and micro shocks on the aggregate and disaggregate variables. The extent to

which aggregation can generate excessive persistence is investigated by Monte Carlo experiments

in the context of large dynamic panel data models with and without unobserved common factors.

The paper concludes with an empirical application to consumer price in�ation in Germany, France

and Italy, and re-examines the extent to which in�ation persistence at the aggregate level is due to

aggregation and/or common unobserved factors. We �nd that dynamic heterogeneity alone cannot

explain the persistence of aggregate in�ation, rather it is the combination of factor persistence

and cross section heterogeneity that seems to be responsible for the observed persistence of the

aggregate in�ation.

The remainder of the paper is organized as follows. To place the contribution of this paper in

the context of the literature, in Section 2 we begin with an overview of Granger�s main results on

aggregation and persistence. Section 3 derives the optimal aggregate model for a factor augmented

VAR inN cross section units and discusses the main implications of theoretical results. Relationship

between micro and macro parameters are discussed in Section 4. The impulse response e¤ects

of micro and macro shocks on disaggregate and aggregate variables are derived and contrasted

in Section 5. Monte Carlo experiments are presented in Section 6, and Section 7 reports on the

empirical application. Section 8 concludes the paper. Some of the mathematical proofs are provided

in an Appendix.

A brief word on notations: kAk1 � max
1�j�n

Pn
i=1 jaij j denotes the column sum matrix norm of

A 2 Mn�n, where Mn�n is the space of real-valued n � n matrices. kAk1 � max
1�i�n

Pn
j=1 jaij j is

the row matrix norm of A. kAk =
p
% (A0A) is the spectral norm of A,2 % (A) � max

1�i�n
fj�i (A)jg

is the spectral radius of A, and j�1(A)j � j�2(A)j � ::: � j�n(A)j are the eigenvalues of A. All

vectors are column vectors.
2Note that if x is a vector, then kxk =

p
% (x0x) =

p
x0x corresponds to the Euclidean length of vector x.
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2 Granger�s Contributions to Aggregation and Persistence

Clive Granger has contributed to and shaped many aspects of the literature on aggregation. His �rst

paper on aggregation, Granger (1980), showed that aggregation over a large number of stationary

AR(1) processes can generate long memory in the aggregated series. This �nding together with

an earlier work by Mandelbrot and van Ness (1968) on fractional Brownian motions started an

extensive literature on fractionally integrated and cointegrated processes. The second seminal

contribution of Granger to aggregation literature is on the role of cross section dependence in

aggregation. In Granger (1987), he focused on the implications of cross sectional aggregation

with common factors, and showed that a high degree of statistical �t at the micro level could be

compatible with almost no �t at the macro level, and vice versa. Granger�s �nding that common

factors dominate aggregate relationships has been explored in various papers in the literature. Some

of these issues were further discussed in Granger (1990). Granger also contributed to the discussion

of aggregation and cointegration, temporal aggregation, aggregation of non-linear models, and small

scale aggregation of space-time processes. See Granger (1993), Granger and Siklos (1995), Granger

and Lee (1999) and Giacomini and Granger (2004). Given the focus of our paper on aggregation

and persistence in what follows we only consider Granger�s result on memory properties of the cross

sectionally aggregated dynamic processes, and the role of cross section dependence in a large scale

cross section aggregation.

2.1 Aggregation of independent AR(1) models

Consider the following AR(1) disaggregate relations,

yit = �iyi;t�1 + uit,

for i = 1; 2; :::; N , and t = :::�1; 0; 1; 2; :::, where j�ij < 1. Suppose these relations are independent,

and in addition �i and V ar (uit) = �2i are independently and identically distributed (iid) random

draws with the distribution function F (�) for � on the range [0; 1). Granger�s objective was the

memory properties of the aggregate variable St;N (y) =
PN
i=1 yit. The same set-up was considered

also in an earlier work by Robinson (1978) with a di¤erent focus on the estimation of moments of
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F (�).3 To study the persistence properties of the aggregates, Granger considered the spectrum of

�yN t = N�1PN
i=1 yit,

�fN (!) = N�1
NX
i=1

fi (!) t
1

2�
E [V ar (uit)]

Z
1

j1� �e�i!j2
dF (�) :

Then assuming that � is type II Beta distributed with parameters p > 0 and q > 0, he showed that

for su¢ ciently large N , the sth order autocovariance of St;N (y) = N �yN t, is O(s
1�q), and therefore

the aggregate variable behaves as a fractionally integrated process of order 1�q=2. In fact the long

memory property holds more generally, so long as the support of the distribution of � covers 1.

2.2 Role of cross section dependence in aggregation

The second important area of Granger�s contribution to the aggregation literature is on the role

of cross section dependence in aggregation of a large population of micro units. Granger (1987)

considered a simple factor model to illustrate the main issues,

yit = xit + 
ift,

where xit is unit-speci�c explanatory variable, ft is common factor with loading 
i, and as before

yit is observation for the unit i at time t. Suppose xit and ft have zero means, bounded variances,

and xit is independently distributed of ft and of xjt for all j 6= i. Consider the variance of the

aggregate variable St;N (y),

V ar [St;N (y)] =

NX
i=1

V ar (xit) +N
2
2

N
V ar (ft) ,

where 

N
= N�1PN

i=1 
i. The �rst summand is at most of order N , denoted as O (N), and,

provided that limN!1 

N
6= 0, the second summand is of order N2. The second term will therefore

generally dominate the aggregate relationship. Granger demonstrated striking implications of this

�nding in terms of the �t of the aggregate (macro) relationship, where common factor prevails when

3Robinson (1978) identi�ed moments of F (�) in terms of autocovariances 
` = E (yityit+`), established su¢ cient
and necessary conditions for yt = E (yit) to have continuous spectral density, and considered the problem of estimation
of the moments of F (�) using disaggregate data, where he excluded some cases with long-memory of the aggregate
variable. In particular, he required E

�
y2it
�
to exist for consistency, and E

�
y4it
�
to exist for asymptotic normality of

his proposed estimator.
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N is su¢ ciently large, and disaggregate (micro) relationships, where micro regressor could play a

leading role. If the common factor was unobserved, then the aggregate relation would have zero

�t (for N large) whereas the �t of disaggregate relations could be quite high, being driven by the

micro regressor, xit. On the other hand, if ft was observed and xit was unobserved then the macro

relation would have a perfect �t (for N large), whereas the micro relation may have very poor

�t due to the missing micro regressor, xit. Hence variables that may have very good explanatory

power at the micro level might be unimportant at the macro level, and vice versa. Granger showed

that the strength and pattern of cross section dependence thus plays a central role in aggregation

and the components with weaker cross section dependence typically do not matter for the behavior

of aggregate variables.

3 Aggregation of Factor Augmented VAR Models

Granger (1980) also discussed extensions of the basic AR(1) set-up outlined in the previous section,

including what he called as �a very large scale dynamic, econometric model�given by yt = �yt�1+

ut; where yt = (y1t; y2t; :::; yNt)
0, and ut = (u1t; u2t; :::; uNt)

0. Granger (1980), p. 237, conjectured

that the distribution of eigenvalues of � could be pertinent to the long memory properties of the

aggregate series. We study aggregation of high-dimensional VARs and establish conditions under

which Granger�s conjecture turns out to be correct using the following augmented VAR model in

N cross section units

yt = �yt�1 +Bxt + �f t + ut; (1)

where xt = (x1t; x2t; :::; xNt)0, ft is m� 1 vector of common factors, � and B are N �N matrices

of coe¢ cients, and � is an N � m vector of factor loadings with elements denoted by 
ij , for

i = 1; 2; ::; N and j = 1; 2; ::;m. We denote the elements of � by �ij , for i; j = 1; 2; :::; N , and

assume that B is a diagonal matrix with elements given by the elements of � = (�1; �2; :::; �N )
0.

This speci�cation can be readily generalized to allow for more cross section speci�c regressors.

The objective is to derive an optimal aggregate function for �ywt = w0yt in terms of its lagged

values, and current and lagged values of �xwt and ft, where w = (w1; w2; :::; wN )0 is a set of prede-

termined aggregation weights such that �Ni=1wi = 1. Throughout it is assumed that w is known
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and the weights are granular, in the sense that

jwij
kwk = O

�
N�1=2

�
, for any i, and kwk = O

�
N�1=2

�
. (2)

Denote the aggregate information set by 
t = (�yw;t�1; �yw;t�2; :::; �xwt; �xw;t�1; :::; ft; ft�1; :::): When

ft is not observed the values of ft in 
t must be replaced by their �tted or forecast values obtained

from an auxiliary model in ft and possibly other variables, not included in (1).

Introduce the extended information set �t = (yt�M ;xt;xt�1; ::::; ft; ft�1; :::; �yw;t�1; �yw;t�2; :::),

which contains 
t. The following assumptions on the eigenvalues of � and the idiosyncratic errors,

ut = (u1t; u2t; :::; uNt)
0; are postulated.

ASSUMPTION 1 All eigenvalues of �, denoted by �i; for i = 1; 2; :::; N , are distinct and have

the following invariant conditional moments

E
�
�si
���t;P;ut�s

�
= as;

E (�si j�t;P;B) = bs(�);

E (�si j�t;P;�) = cs(�);

9>>>>=>>>>; (3)

for all s = 1; 2; :::; and i = 1; 2; :::; N , where �t = (yt�M ;xt;xt�1; ::::; ft; ft�1; :::; �yw;t�1; �yw;t�2; :::),

P is N � N matrix containing the eigenvectors of � as column vectors (in any order), and the

coe¢ cient vector � and the coe¢ cient matrices B and � are de�ned in model (1).

ASSUMPTION 2 The idiosyncratic shocks, ut = (u1t; u2t; :::; uNt)0, in (1) are serially uncorre-

lated and weakly cross sectionally dependent with zero means and �nite variances.

The above assumptions allow dependence between �i and the loadings �i and 
ij . Also since

by assumption ut is serially uncorrelated then

E(w0ut j�t;�;B;�) = 0; and hence E(w0ut j�t;P) = 0: (4)

As shown in Pesaran (2003), the optimal aggregate function (in a mean squared error sense) is

given by

�ywt = E
�
w0yt j
t

�
+ vwt;
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where by construction E (vwt j
t ) = 0, and vwt, t = 1; 2; ::: are serially uncorrelated, although they

could be conditionally heteroskedastic.

Solving (1) recursively forward from the initial state, y�M ; we have

yt = �
t+My�M +

t+M�1X
s=0

�s (Bxt�s + �f t�s + ut�s) : (5)

Hence, using the spectral decomposition of � = P�P�1, where � =diag (�1; �2; :::; �N ) is a di-

agonal matrix with eigenvalues of � on its diagonal and the columns of P are the associated

eigenvectors of �, we obtain

�ywt = w
0P�t+MP�1y�M +

t+M�1X
s=0

w0P�sP�1 (Bxt�s + �f t�s + ut�s) : (6)

Let 	bt = (P;�t;B); 	�t = (P;�t;�); 	ut = (P;�t;ut�s) and St = (P;�t). It is clear that

St � 	bt; St � 	�t, and St � 	ut, and by the chain rule of expectations we obtain

E
�
P�sP�1B jSt

�
= E

�
E
�
P�sP�1B j	bt

�
jSt
�
= E

h
PE(�s j	)P�1B jSt

i
:

Similarly,

E
�
P�sP�1� jSt

�
= E

�
E
�
P�sP�1� j	�t

�
jSt
�
= E

h
PE(�s j	�t )P

�1� jSt
i
:

But under (3) we have, E (�s j	ut ) = asIN ; E (�
s j	bt ) = bs(�)IN ; and E (�

s j	�t ) = cs(�)IN .

Hence

E
�
P�sP�1B jSt

�
= E

h
Pbs(�)P

�1B jSt
i

= E [bs(�)B jSt ] :

Similarly,

E
�
P�sP�1� jSt

�
= E

�
E
�
P�sP�1� j	�t

�
jSt
�
= E

h
Pcs(�)P

�1� jSt
i

= E [cs(�)� jSt ] :
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Finally,

E
�
P�sP�1ut�s jSt

�
= E

�
E
�
P�sP�1ut�s j	ut

�
jSt
�
= E

�
PasINP

�1ut�s jSt
�
= asE (ut�s jSt ) :

Taking expectations of both sides of (6) conditional on St, we now have

E (�ywt jSt ) = w0E
�
P�t+MP�1 jSt

�
y�M +

t+M�1X
s=0

w0E
�
P�sP�1B jSt

�
xt�s +

t+M�1X
s=0

w0E
�
P�sP�1� jSt

�
ft�s +

t+M�1X
s=1

w0E
�
P�sP�1ut�s jSt

�
:

Using the results derived above together with (4) we obtain

E (�ywt jSt ) =
�
w0y�M

�
at+M +

t+M�1X
s=0

w0E [bs(�)B jSt ]xt�s +

t+M�1X
s=0

w0E [cs(�)� jSt ] ft�s +
t+M�1X
s=1

asE
�
w0ut�s jSt

�
;

and �nally taking expectations conditional on the aggregate information set (and noting that 
t �

St)

E (�ywt j
t ) =
�
w0y�M

�
E (at+M j
t ) +

t+M�1X
s=0

w0E [bs(�)B j
t ]xt�s

+

t+M�1X
s=0

w0E [cs(�)� j
t ] ft�s +
t+M�1X
s=1

asE (�uw;t�s j
t ) :

In the case where �i and 
i are identically distributed across i,

E [bs(�)B j
t ] = bsIN , (7)

E [cs(�)� j
t ] = �Nc0s, (8)
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where bs = E [bs(�)�i], �N is N � 1 vector of ones, and cs = E [cs(�)
i]; and we have

E (�ywt j
t ) =
�
w0y�M

�
E (at+M j
t ) +

t+M�1X
s=0

bsw
0xt�s

+
t+M�1X
s=0

c0sft�s +
t+M�1X
s=1

asE (�uw;t�s j
t ) :

The above result holds for any �nite M and t. It also holds for M ! 1, if fasg; fbsg and

fcsg decay su¢ ciently fast. If j�ij < 1� �; for some strictly positive constant � > 0, j�ij < K and

k
ik < K, for some �nite constant K < 1 and for all i, then the distributed lag coe¢ cients in

the aggregate function decay exponentially. But if �i are draws from a uniform distribution, for

example, with supports covering -1 and/or 1, the rate of decay of the distributed lagged coe¢ cients

will be slower than exponential (typically the decay rate is given by 1=(1 + s)), and the resultant

aggregate function would exhibit long memory. Under both of these situations and forM su¢ ciently

large, and a �nite initial value, w0y�M , we have

E (�ywt j
t ) =
1X
s=0

bs�xw;t�s +
1X
s=0

c0sft�s +
1X
s=1

as�t�s:

where �t�s = E (�uw;t�s j
t ). Note that
P1
s=1 as�t�s = E [

P1
s=1 as�uw;t�s j
t ]. The optimal aggre-

gate function will then be

�ywt =
1X
s=0

bs�xw;t�s +
1X
s=0

c0sft�s +
1X
s=1

as�t�s + vwt: (9)

It is important to note that the above result holds for any �nite N .

3.1 Limiting behavior of the aggregate function

The persistence of the aggregate variable, �ywt, to shocks depends on the decay rates of the dis-

tributed lag coe¢ cients, fasg; fbsg and fcsg. Suppose that the distribution of eigenvalues complies

with the following assumption.

ASSUMPTION 3 The conditional moments, E
�
�si
���t;P;ut�s

�
= as; in Assumption 1 are

absolute summable, namely
P1
s=0 jasj < K <1.
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As noted above, in the case where �i; the eigenvalues of �, are independent draws from a

distribution with support that excludes unity, then aswill be absolute summable.

Since ut is serially uncorrelated

V ar

 1X
s=1

as�uw;t�s

!
=

1X
s=1

a2sV ar(�uw;t�s) �
 1X
s=1

a2s

!
sup
t
[V ar(�uwt)] ;

But since the errors, (u1t; u2t; :::; uNt) are cross sectionally weakly dependent under Assumption

2, supt [V ar(�uwt)] ! 0, as N ! 1, (See Chudik, Pesaran, and Tosetti (2010)), and under As-

sumption 3,
P1
s=1 a

2
s < K. Hence, for each t;

P1
s=1 as�uw;t�s

q:m! 0. Also since
P1
s=1 as�t�s =

E (
P1
s=1 as�uw;t�s j
t ), it follows that

1X
s=1

as�t�s
q:m! 0; (10)

and hence for each t we have

�ywt �
1X
s=0

bs�xw;t�s �
1X
s=0

c0sft�s � vwt
q:m! 0, as N !1:

The behavior of the aggregation error, vwt, as N !1 depends on the nature of the processes

generating xit, ft, and uit, as well as the degree of cross section dependence of the coe¢ cients in

�. To this end we postulate the following assumptions.

ASSUMPTION 4 The micro regressors, xit, for i = 1; 2; :::; N , in (1) are generated accordingly

to the following common factor model,

xit =

mxX
k=1

�ikgkt + vxit, (11)

where the mx common factors, gt = (g1t; g1t; :::; gmxt)
0, are covariance stationary with absolute

summable autocovariances, and kE (gtg0t)k < K. The factor loadings �i = (�i1; �i2; :::; �imx)
0

are independently and identically distributed across i with common mean E (�i) = �, and satisfy

kE (�i�0i)k < K. The individual speci�c components vxit have zero mean, are uncorrelated, cross

sectionally weakly dependent, and independently distributed from the remaining random variables

in (1).
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ASSUMPTION 5 The common factors, ft; in (1) are stationary with absolute summable auto-

covariances, and kE (ftf 0t)k < K.

ASSUMPTION 6 k�k � � < 1 for all realizations of random variables in �, and the coe¢ cients

in �ij, for i; j = 1; 2; :::; N , are independently distributed from ut, � and �. In addition, the

coe¢ cients �i and 
i are identically and independently distributed across i; with means E (�i) = �

and E (
i) = 
, and kE (
i
 0i)k < K.

ASSUMPTION 7 The column and row norms of the matrix of eigenvectors, P, are bounded.

Assumption 4 essentially decomposes xit into a cross-sectionally strongly dependent component,Pmx
k=1 �ikgkt; and a cross sectionally weakly dependent component, vxit. See, also Chudik, Pesaran,

and Tosetti (2010). The independence of � from � and � implies bs = as�, and cs = as
.

Therefore, the sequences fbsg and fcsg will be absolutely summable under Assumption 3.

The following proposition establishes su¢ cient conditions for aggregation error to vanish as

N !1.

Proposition 1 Under Assumptions 1-6, and for any weights vector w, satisfying the granularity

conditions in (2), we have
1X
s=0

w0�sut�s
q:m! 0, as N !1: (12)

If in addition Assumption 7 holds, then

1X
s=0

�
w0�s�f t�s � c0sft�s

� q:m! 0, (13)

1X
s=0

�
w0�sBxt�s � bs�xw;t�s

� q:m! 0, (14)

and the aggregation error vwt
q:m:! 0, as N !1. See Appendix A for a proof.

Under the assumptions in Proposition 1, the aggregation error vwt tends to zero in quadratic

mean and we have

�ywt �
1X
s=0

bs�xw;t�s �
1X
s=0

c0sft�s
q:m! 0, as N !1:
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Crucial assumption for vwt
q:m! 0 is weak dependence of innovations, which implies an appro-

priate bound on k�uk = kE (utu0t)k, and a su¢ cient bound on the norm of �, which impliesP1
s=1E k�sk �

P1
s=1E k�k

s < K. If on the other hand
P1
s=1E k�sk is not bounded as N !1,

or ut is strongly cross sectionally dependent, then the aggregation error vwt does not necessarily

converge to zero and could be sizeable.

4 Relationship between Micro and Macro Parameters

In this section we discuss the problem of identi�cation of micro parameters, or some of their

distributional features, from the aggregate function given by (9). Although it is not possible to

recover all of the parameters of micro relations, there are a number of notable exceptions. An

important example is the average long-run impact de�ned by,

��N =
1

N
� 0N� =

1

N
� 0N (IN ��)

�1 �, (15)

where � = (IN ��)�1 � =
�
� +�� +�2� + :::

�
is the N � 1 vector of individual long-run coef-

�cients, and �N is an N � 1 vector of ones. Suppose that �i are identically distributed across i

with mean � and the conditions set out in (3) are satis�ed. Under these assumptions equation (7)

holds and E (�s�) = E fE [bs(�)B j
t ]g = bsIN for any s = 0; 1; :::. Hence, the elements of � have

a common mean, E (�i) = � =
P1
`=0 bs, which does not depend on elements of P. If, in addition,

the sequence of random variables �i is ergodic in mean, then for su¢ ciently large N , ��N is well

approximated by its mean,
P1
`=0 bs, and the cross sectional mean of the micro long-run e¤ects can

be estimated by the long-run coe¢ cient of the associated optimal aggregate model. This result

holds even if �i and �i are not independently distributed, and irrespective of whether micro shocks

contain a common factor.

Whether ��N
p! � deserves a comment. A su¢ cient condition for ��N to converge to its mean (in

probability) is given by

kV ar (�)k = O
�
N1��� , for some � > 0, (16)

in which case


V ar ���N�

 � N�1 kV ar (�)k = O (N��) ! 0 as N ! 1 and ��N

q:m:! �. Condition

(16) need not always hold. The condition (16) can be violated if there is a high degree of dependence

14



of micro coe¢ cients �i across i, and or if there is a dominant unit in the underlying model in which

case the column norm of � becomes unbounded in N .

The mean of �i is straightforward to identify from the aggregate relation since E (�i) = b0.

But further restrictions are needed for identi�cation of E (�i) from the aggregate model. Similarly

to Pesaran (2003) and Lewbel (1994), independence of �i and �i would be su¢ cient for the iden-

ti�cation of the moments of the micro parameters, �i. Under the assumption that �i and �i are

independently distributed, all moments of �i can be identi�ed as

E (�si ) =
bs
b0
. (17)

Another possibility is to adopt a parametric speci�cation for the distribution of the micro

coe¢ cients and then identify the unknown parameters of the cross sectional distribution of micro

coe¢ cients from the aggregate speci�cation. For example suppose �i is independently distributed

of �i and �i has a beta distribution over (0; 1),

f (�) =
�p�1

�
1� �q�1

�
B (p; q)

, p > 0; q > 0, 0 < � < 1.

Then as discussed in Robinson (1978) and Pesaran (2003), we have

p =
b1 (b1 � b2)
b2b0 � b21

, q =
(b0 � b1) (b1 � b2)

b2b0 � b21
,

and � = b0 (p+ q � 1) = (q � 1). Another example is uniform distribution for �i on interval [a1; a2],

a1 > �1, a2 < 1. Equation (17) can be solved to obtain (see Robinson, 1978),

a1 =
b1 �

q
3
�
b0b2 � b21

�
b0

, and a2 =
b1 +

q
3
�
b0b2 � b21

�
b0

.

5 Impulse Responses of Micro and Macro Shocks

This section considers the e¤ects of micro and macro shocks in the factor augmented VAR model

given by (1), but without the exogenous regressors. Including them is of little consequence for the
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analysis that follows. We set � = 0 and write (1) as

yt = �yt�1 + �f t + ut. (18)

The common factors are assumed to follow the VAR model,

ft = 	f t�1 + "t, (19)

where 	 is an m�m matrix of coe¢ cients, and "t = ("1t; "2t; :::; "mt)
0 is the m� 1 vector of macro

shocks. Both, the reduced form micro innovations in ut, and the macro shocks in "t, are assumed to

be serially uncorrelated with zero means. Also without loss of generality it is assumed that ut and

"t0 are independently distributed for all t and t0. In addition, it is assumed that V ar (ut) = �u,

where �u is a positive de�nite matrix such that its column sum does not expand at the rate

N , namely k�uk1 = O
�
N1��� ; for some positive constant � > 0. This condition is su¢ cient and

necessary for weak cross section dependence of micro innovations. See Chudik, Pesaran, and Tosetti

(2010). Finally, without loss of generality, the variance matrix of macro shocks V ar ("t) = �" is

assumed to be diagonal matrix. The number of lags in VAR models (18) and (19) is restricted to

one only for expositional convenience.

Combining (18) and (19) we have

Gzt = Hzt�1 + vt, (20)

where zt = (y0t; f
0
t)
0 ; vt = (u0t; "

0
t)
0,

G =

0B@ IN ��

0m�N Im

1CA , and H =

0B@ � 0N�m

0m�N 	

1CA .
The vector vt consists of both the micro shocks, fujt = vjt; for j = 1; 2; :::; Ng, and the macro

shocks f"jt = vN+j;t; for j = 1; 2; :::;mg. The matrix G is upper triangular with ones on its main
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diagonal with the inverse given by

G�1 =

0B@ IN �

0m�N Im

1CA .
Pre-multiplying both sides of equation (20) by G�1 yields the following reduced form VAR model

for zt,

zt = Czt�1 +G
�1vt, (21)

where C = G�1H. Assuming that all eigenvalues of � and 	 are within the unit circle,

zt =

1X
s=0

CsG�1vt�s,

where

Cs =

0B@ �s
Ps�1
`=0 �

`�	s�`

0m�N 	s

1CA , for s = 0; 1; 2; ::: .
5.1 Generalized impulse response functions

In order to analyze the e¤ects of macro and micro shocks on the individual units or on the aggregate

variable, we use the generalized impulse response functions (GIRF) proposed by Koop, Pesaran,

and Potter (1996) and further developed by Pesaran and Shin (1998). The generalized impulse

responses have the property of being invariant to the ordering of the variables, which is of particular

importance in a large system. The GIRF of yit for a unit shock to the j-th innovation, vjt; is de�ned

by

GIRF ij (s) = E
�
yi;t+s

��vjt = p�jj ; It�1 �� E (yi;t+s jIt�1 ) = �
�1=2
jj e0i;vC

sG�1�ej;v; (22)

where It�1 is the information set at time t� 1, ei;v is an (N +m)� 1 selection vector that selects

the i-th element of vt = (u0t; "
0
t)
0,

�
N+m�N+m

= E
�
vtv

0
t

�
=

0B@ �u 0N�m

0m�N �"

1CA ,
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and �jj is the j-th diagonal element of�. The sub-matrix�" = E ("t"
0
t) was assumed to be diagonal

matrix without any loss of generality. However, the o¤-diagonal elements of the matrix �u are in

general non-zero and no restrictions, besides the weak cross section dependence assumption, are

placed on �u.

In addition to a shock to an individual variable, we also consider the GIRF of yit for a composite

shock, a0vvt, which is given by

GIRF i (s;av) = �a
�
a0v�av

��1
e0i;vC

sG�1�av. (23)

Normally we set �a = (a0v�av)
1=2, in which case GIRF function (23) shows the e¤ects of one unit

composite shock. We also �nd it useful in the empirical application below to set the size of the

composite shock to match the standard error of the innovations to the optimal aggregate function.

The analysis below distinguishes between the e¤ects of micro and macro shocks, noting that the

former are identi�ed by j = 1; 2; ::::; N , and the latter by j = N+1; N+2; :::; N+m. Also the e¤ects

of macro shocks on micro and macro variables can be obtained by setting j = N +1; :::; N +m, and

i = 1; 2; :::; N;N+1; :::; N+m in the above expressions. But to simplify the notations we denote the

e¤ects of micro shocks by hij (s) � GIRF ij (s) for j = 1; 2; :::; N , and the e¤ects of macro shocks

by gij (s) � GIRF ij (s), for j = N +1; N +2; :::; N +m. Similarly, the GIRF of yit for a composite

micro shock, a0uut; will be denoted by hi (s;au) � GIRF i (s;av), where av = (a0u;0
0
m)

0, and the

GIRF of yit for a composite macro shock, a0""t; by gi (s;a") � GIRFi (s;av), where av = (00N ;a
0
")
0.

5.2 E¤ects of macro shocks

Using (22), it is easily seen that the e¤ects of a composite macro shock are given by

gi (s;a") =
�
a0"�"a"

�� 1
2 e0i;u

 
sX
`=0

�`�	s�`

!
�"a", for i = 1; 2; :::; N; (24)

where ei;u is an N � 1 selection vector that selects the ith element. If we set a" = ej;", where ej;" is

an m � 1 selection vector that selects the jth element of "t, we obtain the e¤ects of a unit macro

shock to the j-th factor on the individual units, i = 1; 2; :::; N . These e¤ects can be aggregated
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across units to get the following results for the aggregate e¤ect of the (composite) macro shock:

gw (s;a") =
NX
i=1

wigi (s;a") =
�
a0"�"a"

�� 1
2 w0

 
sX
`=0

�`�	s�`

!
�"a", (25)

where as before, wi, for i = 1; 2; ::::; N , are the aggregation weights.

Now consider the associated GIRF based on the optimal aggregate function, de�ned by

g (s;a") = E [gw (s;a") j
t ] ,

where as before 
t = (�yw;t�1; �yw;t�2; :::ft; ft�1; :::) is the aggregate information set. Assuming N

is large, � is independently distributed of �, E (
i) = 
 for all i, and that the eigenvalues of �

satisfy Assumption 1 we have

g (s;a") =
�
a0"�"a"

��1=2 sX
`=0

a`

0	s�`

!
�"a", (26)

for s = 0; 1; 2; :::. Note that g (s;a") does not depend on the individual micro parameters or the

weights; and shows clearly how the persistence e¤ects of the common factors (given by the powers of

	) compound with the heterogeneity in eigenvalues of the micro coe¢ cient matrix, �, as re�ected

in the decay rate of as. The resulting aggregate e¤ects of macro shocks can be long lasting and

very sluggish, as can be seen from the Monte Carlo and the empirical results that follow.

5.3 E¤ects of micro shocks

Using equation (22), the e¤ects of a unit (composite) micro shock are given by

hi (s;au) =
�
a0u�uau

�� 1
2 e0i;u�

s�uau, for i = 1; 2; :::; N: (27)

where as before ei;u is an N � 1 selection vector that selects the ith element of ut. For au = ej;u,

j = 1; 2; :::; N , we obtain the e¤ects of a unit shock to the j-th unit on the i-th variable. The e¤ects

of a micro shock on the aggregate variable is given by the cross section average of the individual

e¤ects in (27),

hw (s;au) =

NX
i=1

wihi (s;au) =
�
a0u�uau

�� 1
2 w0�s�uau. (28)
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By setting au to w in the above expression we obtain the impulse responses of the e¤ects of

an average micro shock, w0ut, namely hw (s;w) = (w0�uw)
� 1
2 w0�s�uw. Note that in general

hw (s;w) di¤ers from the distributed lag coe¢ cients, as = E (w0�s� ), in the optimal aggregate

function. However, hw (s;w) and as coincide (apart from a scaling constant) if the micro shocks

are uncorrelated. The advantage of using hw (s;w) over as lies in the fact that the former allows

for possible weak cross section dependence in the micro errors, whilst the latter does not.

If the cross section dependence of micro units is weak conditionally on the macro shocks and

their lags, then the e¤ects of a unit micro shock on the aggregate variable become negligible, as

established in the following proposition.

Proposition 2 Suppose that the aggregation weights satisfy the granularity conditions in (2),

k�uk = O
�
N1���, for some � > 0, and E k�sk < K for some constant K < 1. Then for

any given j 2 f1; 2; 3; :::g, and s 2 f0; 1; 2; :::g, and for any nonzero vector, au 6= 0, the aggregate

e¤ects of a unit micro shock, given by equation (28), satisfy

lim
N!1

E jhw (s;au)j = 0. (29)

Above proposition implies that e¤ects of a shock to the j-th micro unit on the aggregate variable

become negligible, namely limN!1E jhw (s; ej;u)j = 0.

6 Excessive Persistence: A Monte Carlo Investigation

The question of persistence in macro variables, such as consumer price in�ation or real exchange

rates, is an important issue in economics. In this section, using Monte Carlo techniques, we

investigate the extent to which aggregation can generate excessive persistence in macro variables.

In particular, we examine the possible sources of such persistence focussing on heterogeneity of

micro parameters, persistence of unobserved common factor, or a combination of both. We employ

the impulse response functions of micro and macro shocks developed in the previous section to

compare the persistence of shocks under alternative scenarios, using the disaggregate and aggregate

speci�cations.

Three di¤erent Monte Carlo designs are considered. We start with a benchmark case where the
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panel data are generated from weakly dependent AR(1) micro relations. The objective here is to

see how well the true persistence of the aggregate variable can be estimated from the distributed

lag coe¢ cients of the optimal aggregate equation, and to illustrate Proposition 2 by showing how

fast the aggregate e¤ects of micro shocks decay with N . The Monte Carlo design is then extended

by introducing common factors into the panel, which allows us to examine the relative importance

of macro shocks and the aggregation process for the persistence of the aggregates. Finally, we

consider a more general setting where we also allow for neighborhood e¤ects and examine their

importance in generating persistence at the aggregate level.

6.1 Experiments based on micro relations without a common factor or neigh-

borhood e¤ects

Initially we begin with AR(1) micro relations considered by Granger (1980) and Robinson (1978),

but we allow for weak cross section dependence of innovations,

yit = �iyi;t�1 + uit, for i = 1; 2; :::; N . (30)

The autoregressive micro coe¢ cients are generated as �i � IIDU (0; �max), for i = 1; 2; :::; N . Two

options for �max are considered, (a) �max = 0:9 and (b) �max = 1, that yield di¤erent rates of

delay in the lag coe¢ cients in the optimal aggregate equation. These choices are motivated by the

theoretical considerations and the empirical application that follows.

Although, the original analyses of Robinson and Granger assume the idiosyncratic innovations,

uit, to be cross sectionally independent, as noted earlier our theoretical results continue to hold

even if these innovations are cross sectionally correlated so long as the dependence is weak in the

sense discussed in Chudik, Pesaran, and Tosetti (2010). To allow for weak cross section dependence

in the errors, we generate ut = (u1t; u2t; :::; uNt)
0 according to the following spatial autoregressive

process,

ut = �uSuut + #t, 0 < �u < 1, (31)

where #t = (#1t; #2t; :::; #Nt)
0, #it � IIDN

�
0; �2#

�
, for i = 1; 2; :::; N , and the N �N dimensional

spatial weights matrix Su is
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Su =

0BBBBBBBBBBBBBB@

0 1 0 0 � � � 0

1
2 0 1

2 0 � � � 0

0 1
2 0 1

2 0

...
. . . . . . . . .

0 1
2 0 1

2

0 0 � � � 0 1 0

1CCCCCCCCCCCCCCA
.

The parameter �u is set equal to 0:4, which ensures that the errors are cross sectionally weakly

dependent, and the variance �2# is set equal to N=tr (�u) so that on average V ar(uit) = 1, where

�u = RuR
0
u, and Ru = (I� �uSu)

�1. Micro observations are generated using model (30) with 50

burn-in data points and the initial values, yi;�50 = 0 for all i.

We refer to relations in (30) and (31) as the disaggregate relations without a common factor

or neighborhood e¤ects, although the innovations are spatially dependent. As to the aggregate

variable we use the simple cross section average, �yt = N�1PN
i=1 yit.

The optimal aggregate equation, (9), simpli�es considerably under this Monte Carlo set up.

There are no micro regressors and no common factors in these experiments, which implies that

bs = 
s = 0, and, under the assumption of uniformly distributed micro AR parameters on the

interval [0; �max], the distributed lag coe¢ cients in the optimal aggregate equation are given by

as = (1 + s)
�1 �smax, for s = 0; 1; 2; :::

The objective of Monte Carlo experiments is to estimate the distributed lag coe¢ cients as

for s = 1; 2; ::: from disaggregate and the associated aggregate models. These coe¢ cients in the

aggregate equation are the moments of the autoregressive micro parameters.

There are several ways that as can be estimated, and we consider the following two options.

One option is to estimate an AR(p) process for the aggregate variable, �yt, and then compute

the corresponding moving average representation. We denote this estimator by ~as and refer to it

as the "aggregate estimator". A potential disadvantage of this approach is that it relies on the

selection of the truncation lag order, p. Coe¢ cients as need not be absolute summable, in which

case the aggregate variable will be a long memory process and a rather large value of p might be

needed to capture the slowly decaying tail e¤ects of the lag distribution of the aggregate function.

Accordingly, when selecting the lag order for the aggregate speci�cation we set the maximum lag
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order to
p
T and use the Akaike information criterion (AIC) to choose the lag order. Advantage of

this macro approach is that it does not rely on correct speci�cation of the micro relations.

An alternative estimator of fasg can be based on disaggregate estimates, �̂i. Recall that

under our assumptions, f�i; i = 1; 2; :::; Ng, are random draws from the distribution of �, and

as = E (w0�s� ) = E(�s). Hence, for su¢ ciently large N and T , the distributed lag coe¢ cients

can be consistently estimated by bas = 1
N

PN
i=1
b�si , where b�i is the least square estimator of �i in

the autoregressions (30). The distribution F� is not the same as the distribution of b�i when T is
�nite, but bas is consistent at least when T !1 followed by N !1. Both the aggregate and the

disaggregate estimators are biased when T is small.

Initially, we also report the estimates of as based on a "representative agent" speci�cation where

the aggregate model is assumed to follow the AR(1) process with the coe¢ cient, E(�). Under this

representation the distributed lag coe¢ cients of the aggregate model are given by �as = [E(�)]
s and

can be consistently estimated by
�
N�1PN

i=1
b�i�s. In the case where �i � IIDU (0; �max), we have

�as = (�max=2)
s, where �max=2 is the population mean of �i. It is clear that for any given value of

�max, �as will decay much faster than the true value of as given by as = E(�s) = (s+ 1)�1 �smax.

6.1.1 Aggregate and disaggregate estimators of as

We �rst report average (across 2000 replications) estimates of as using the aggregate and the

disaggregate estimators, denoted by bas and ~as, respectively. These estimates are compared to the
true values as = (s+ 1)

�1 �smax, and the distributed lag coe¢ cients for a representative unit which

is given by �as = (�max=2)
s. These experiments were carried out for di¤erent combinations of N

and T . But initially we present a graphic representation of the results for (N;T ) = (200,100) in

Figure 1. This sample combination was selected since it is close to the dimensions of the data

sample used in the empirical section. Panel A of the �gure shows the estimates computed using

the true lag orders for the underlying disaggregated models, and panel B the estimates based on

lagged orders selected by AIC (see below for more details). The chart on the left of Figure 1

presents the results for the experiments with �max = 0:9, and the ones on the right relate to the

case where �max = 1. In the former case, as declines at a geometric rate and one would expect the

aggregate and disaggregate estimators to perform reasonably well in large samples. Although in

small samples both estimators are biased downward, which is the well know small sample bias in
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estimating autoregressive coe¢ cients. In line with Kendall�s (1954) approximation formula,4 the

bias is larger in experiments with �max = 1, where there is also a long memory e¤ect since in this

case as decays rather slowly. As to be expected, the results in Figure 1 also show a much faster rate

of decay in the estimates based on the representative unit, as compared to the other two estimators.

The plots in part B of Figure 1 are computed based on the unit-speci�c AR(pi) regressions

yit =

piX
`=1

�i`yi;t�1 + uit, for i = 1; 2; :::; N , (32)

where pi is chosen by AIC with the maximum lag set to 4. The disaggregate estimator, bas; is then
computed as

bas = 1

N

NX
i=1

b�is, (33)

where b�i (L) = b��1i (L; pi) = 1 +
P1
s=1 b�isLs, b�i (L; pi) = 1� b�i1L� b�i2L2 � :::� b�ipiLpi , and b�i`,

` = 1; 2; ::; pi represent the least squares estimators of the autoregressive coe¢ cients in (32). For

the aggregate estimator, the lag order is also selected by AIC, with the maximum lag order set to
p
T . The estimates in part B of Figure 1 are very similar to those in part A, suggesting that not

knowing the lag orders is not a problem for the sample size combinations under consideration.5

The bias and the root mean square error (RMSE) of the estimators for di¤erent values of

N 2 f10; 50; 100; 200g and T 2 f50; 100; 200g are summarized in Table 1. The left part of Table

1 presents bias and RMSE for estimates of as averaged over horizons 1 - 12, and the right panel

presents the results for the estimates averaged over horizons 13 - 24. The aggregate estimator, ~as; in

all cases has substantially larger RMSE (up to 4-7 times) compared to the disaggregate estimator,

âs. Such a large di¤erence in RMSE is generally observed in both experiments, with �max = 0:9

and 1. Overall, the disaggregate estimator, âs; performs much better than the aggregate estimator,

~as.

4E
�b�i�� �i = �1= (1 + 3�i) +O �T�3=2�

5The results based on the Schwarz lag orderation criterion (not reported here) were slightly better compared to
the results based on the Akaike criterion.
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Figure 1: Distributed lag coe¢ cients fasg of the optimal aggregate function for the
experiments without a common factor and neighborhood e¤ects; T = 100 and N = 200

Panel A: Known lag orders used for the underlying disaggregated models
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Panel B: Lag orders of the underlying disaggregate models are selected by AIC
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dashed blue line (bas), the aggregate estimator is represented by thin red line (eas), and the distributed lag
coe¢ cients of the representative agent (�as) are represented by dashed green line.
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Table 1: Bias and RMSE of aggregate and disaggregate estimators (averaged over
horizons s = 1 to 12 and s = 13 to 24) of the distributed lag coe¢ cients fasg in the
optimal aggregate equation. (Experiments without a common factor or neighborhood
e¤ects, for di¤erent values of N and T ).

Bias (�100)
Estimates averaged over horizons from s = 1 to 12 Estimates averaged over horizons from s = 13 to 24

NnT 50 100 200 50 100 200ea ba ea ba ea ba ea ba ea ba ea ba
(a) Experiments with �max = 0:9

10 -3.25 -2.45 -2.05 -1.34 -0.93 -0.63 -0.41 -0.15 -0.43 -0.12 -0.45 -0.04

50 -3.23 -2.52 -1.86 -1.27 -0.82 -0.69 -0.42 -0.17 -0.48 -0.10 -0.49 -0.07

100 -3.31 -2.54 -1.98 -1.30 -0.80 -0.71 -0.47 -0.17 -0.49 -0.11 -0.51 -0.08

200 -3.33 -2.54 -1.82 -1.31 -0.75 -0.69 -0.49 -0.17 -0.52 -0.11 -0.53 -0.07

(b) Experiments with �max = 1 (long memory in aggregate variable)

10 -5.91 -5.00 -2.36 -2.90 0.53 -1.33 -4.16 -3.08 -3.22 -2.23 -2.03 -1.29

50 -5.75 -5.07 -1.90 -2.72 1.79 -1.39 -4.01 -3.07 -3.55 -2.19 -1.94 -1.31

100 -5.72 -4.98 -2.06 -2.80 1.87 -1.31 -4.13 -3.06 -3.55 -2.23 -2.12 -1.25

200 -5.72 -4.99 -1.89 -2.72 2.06 -1.45 -4.08 -3.06 -3.55 -2.18 -1.88 -1.35

RMSE (�100)
(a) Experiments with �max = 0:9

10 10.89 5.77 8.64 5.15 7.30 4.91 3.26 1.38 2.17 1.06 1.63 1.00

50 10.20 3.27 7.82 2.37 6.31 2.01 2.92 0.56 1.78 0.45 1.52 0.39

100 10.25 2.92 7.68 1.92 6.07 1.54 3.09 0.42 1.77 0.32 1.44 0.28

200 10.15 2.74 7.48 1.63 5.97 1.18 2.67 0.34 1.72 0.24 1.49 0.21

(b) Experiments with �max = 1 (long memory in aggregate variable)

10 14.08 8.69 12.62 7.89 11.83 8.05 6.44 4.96 6.49 4.25 6.37 4.48

50 13.45 5.88 10.78 4.15 10.02 3.53 7.55 3.39 5.56 2.66 5.52 2.21

100 13.33 5.40 10.73 3.55 9.47 2.61 6.34 3.25 5.54 2.47 5.19 1.77

200 13.39 5.21 10.54 3.13 9.48 2.18 6.59 3.14 5.38 2.30 5.39 1.61

Notes: The aggregate estimator (eas) is computed as the moving average representation of the estimated aggregate
AR(p) process. The disaggregate estimator (bas) is computed by aggregation of the estimated disaggregate moving
average representations, and is de�ned by (33). Lags in the aggregate AR and the micro AR regressions are chosen by

AIC criterion. The maximum lag in the aggregate regression is set equal to the integer part of
p
T , and the maximum

lag in micro regressions is set to 4. Details of Monte Carlo design are described in Subsection 6.1.
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6.1.2 E¤ects of micro shocks

E¤ects of a unit shock to micro innovations on the individual units could be large, but as established

in Proposition 2, the aggregate e¤ects tend towards zero as the number of cross section units is

increased. This is illustrated in Figure 2, which plots the aggregate e¤ects of a unit shock to u1t

for di¤erent values of N . The aggregate e¤ects of the micro shock are largest when N = 10, but

decrease linearly in N , and are very close to zero for N = 100.

Figure 2: E¤ects of one unit micro shock on the aggregate variable in the experiments
without neighborhood e¤ects
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This �gure plots function hw (s; 1) given by (28) for di¤erent values ofN in experiments without neighborhood

e¤ects.

6.2 Experiments based on micro relations with a common factor but without

neighborhood e¤ects

The model in this case allows for strong cross section dependence in the residuals by considering

the AR(1) models with unobserved common factor

yit = �iyi;t�1 + 
ift + uit, for i = 1; 2; :::; N . (34)

The factor loadings are generated as 
i � IIDN (0:5; 0:1), for i = 1; 2; :::; N , and the common

factor, ft; is generated according to the following relatively persistent AR(1) process,

ft =  ft�1 + "t, "t � IIDN
�
0; 1�  2

�
,  = 0:9, (35)
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with 50 burn-in data points and the initialization f�50 = 0. Innovations ut = (u1t; u2t; :::; uNt)
0 and

the autoregressive micro parameters � = (�1; �2; :::; �N )
0 are generated in the same way as before.

The main objective of the present set of experiments is to consider the small sample properties

of the alternative estimates of the aggregate e¤ects of a macro shock. The GIRF function for the

e¤ects of a macro shock is given by (26). Since we have only one macro shock, "t, we denote the

e¤ects of the macro shock by g (s) in this section. These e¤ects combine both sources of persistence,

the AR coe¢ cient,  ; in the process for the common factor, and the heterogeneity in the micro

AR coe¢ cients, �i. We also examine how these two sources of persistence combine to produce the

overall observed persistence of the aggregate.

6.2.1 E¤ects of macro shocks

Before proceeding further with the results for the aggregate and the disaggregate estimators, it

is useful to illustrate how the persistence in the common factor combines with the heterogeneity

in the micro AR parameters. The e¤ects of a unit shock to "t in the disaggregate model with

heterogeneous parameters for the case of uniformly distributed eigenvalues on the interval [0; �max],

is given by

g (s) = �

sX
`=0

�`max
1 + `

 s�`. (36)

where � = �
1=2
" 
. The result for the representative agent model is given by

�g (s) = �
sX
`=0

�
�max
2

�`
 s�`, (37)

where �max=2 is the population mean of �. It is clear that g (s) decays slower than �g (s), particularly

as s rises. Figure 3 plots the two distributed lag functions for values of  = �max = 0:9. The two

impulse responses are identical on impact (at s = 0), but begin to deviate from each other quite

substantially for large values of s. It takes 19 time periods for g (s) to decline below half of the

initial impact whereas it takes only 12 quarters for the function �g (s) based on the representative

agent model. The di¤erences between the two functions become even larger if we consider the long

memory case where �max = 1.
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Figure 3: E¤ects of a macro shock on the aggregate variable under dynamic hetero-
geneity and the associated representative agent model
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The thick solid orange line represents g (s) for the heterogeneous dynamic model, whilst the thin dashed green

line represents �g (s) for the associated representative agent model, de�ned by (36) and (37), respectively.

Both functions are evaluated at �max =  = 0:9.

6.2.2 Estimation of the aggregate e¤ects of a macro shock

We consider the aggregate estimator, denoted by ~g (s), which is computed using estimates based

on an AR(p) process �tted to the aggregate observations. The lag order is selected by AIC and the

aggregate AR process is estimated by least squares. Thus apart from an scaling constant, ~g (s) is

the same as ~as.

The disaggregate estimator, bg (s) ; is computed by cross section aggregation of the individual
impulse responses, bgi (s), namely

bg (s) = 1

N

NX
i=1

bgi (s) ; s = 0; 1; 2; ::: (38)

where bgi (s) ; i = 1; 2; :::; N , provide estimates of the e¤ects of macro shocks on individual units in
the underlying disaggregate model (21). Micro AR coe¢ cients are consistently estimated by least

squares using the following cross sectionally augmented disaggregated regressions

yit =

piX
`=1

�i`yi;t�` + �i0�yt +

qiX
`=1

�i`�yt�` + �it, for i = 1; 2; :::; N , (39)

where pi and qi are chosen by AIC, with pmax = qmax = 4. The use of cross section averages, �yt; and

its lags to proxy for the unobserved common factor is justi�ed by Chudik and Pesaran (2010). In
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the present context the use of cross section averages tend to perform better than using the principal

components of yit. The aggregate model was approximated by the following AR(p) speci�cation

model

�yt =

pX
`=1

�`�yt�` + "�yt. (40)

The lag order, p; is chosen by AIC with pmax set to the integer part of
p
T .

6.2.3 Results for experiments with a common factor but without neighborhood e¤ects

First we show a graphical representation of the results for the average (across 2000 replications)

values of the disaggregate estimator, bg (s), the aggregate estimator, ~g (s), together with the true val-
ues, g (s), given by equation (36). Figure 4 reports �ndings for the sample size (N;T ) = (200; 100).

The performance of both estimators in terms of bias is very similar. The disaggregate estimator

slightly outperforms the aggregate estimator at longer horizons, similarly to the experiments with-

out the common factor. The bias of both estimators, however, is quite substantial in both sets of

experiments with �max = 0:9 or 1.

RMSE together with bias for various values of N 2 f10; 50; 100; 200g and T 2 f50; 100; 200g are

reported in Table 2. Unlike the results in Table 1, the di¤erence in RMSE of the two estimators

is not very large. The disaggregate estimator marginally outperforms the aggregate estimator in

terms of RMSE when �max = 0:9, but not when �max = 1.

Figure 4: The e¤ects of a macro shock on the aggregate variable for the experiments
with a common factor but without neighborhood e¤ects, T = 100, and N = 200
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The solid thick black line represents the true values, g (s), the disaggregate estimator is represented by the

thick dashed blue line, bg (s), and the aggregate estimator, ~g (s) ; is shown by the thin solid red line.
30



Table 2: Bias and RMSE of aggregate and disaggregate estimators (averaged over
horizons s = 1 to 12 and s = 13 to 24) of the e¤ects of macro shocks on the aggre-
gate variable (Experiments with common factor and without neighborhood e¤ects, for
di¤erent values of N and T )

Bias (�100)
Estimates averaged over horizons from s = 1 to 12 Estimates averaged over horizons from s = 13 to 24

NnT 50 100 200 50 100 200
~g bg ~g bg ~g bg ~g bg ~g bg ~g bg

(a) Experiments with �max = 0:9

10 -11.13 -11.07 -5.59 -5.67 -2.96 -3.19 -8.27 -7.94 -6.26 -5.66 -4.73 -4.00

50 -10.12 -9.96 -6.11 -6.17 -3.37 -3.66 -6.13 -5.61 -4.53 -3.78 -2.55 -1.66

100 -10.55 -10.37 -6.07 -6.12 -3.23 -3.50 -6.17 -5.59 -4.43 -3.69 -2.73 -1.82

200 -10.21 -10.01 -5.80 -5.83 -3.20 -3.44 -6.23 -5.70 -4.56 -3.81 -3.00 -2.08

(b) Experiments with �max = 1 (long memory in aggregate variable)

10 -13.23 -13.31 -6.37 -7.30 -1.70 -3.71 -15.46 -14.17 -11.78 -10.11 -7.51 -5.99

50 -13.67 -13.25 -8.20 -8.65 -4.24 -5.87 -13.51 -11.55 -10.29 -7.92 -6.14 -4.09

100 -14.29 -13.88 -7.98 -8.30 -4.50 -5.81 -14.08 -12.13 -10.37 -7.88 -6.88 -4.64

200 -13.88 -13.30 -7.89 -8.14 -4.33 -5.58 -14.41 -12.26 -10.40 -7.88 -6.60 -4.36

RMSE (�100)
(a) Experiments with �max = 0:9

10 17.84 17.63 14.13 13.55 11.33 10.65 11.94 11.88 9.41 9.18 7.81 7.57

50 14.37 14.21 9.93 9.72 7.11 6.93 11.39 11.31 8.19 7.87 6.35 6.06

100 14.07 13.91 9.77 9.63 6.73 6.63 13.06 12.96 8.64 8.33 6.44 6.06

200 14.34 14.17 9.42 9.27 6.40 6.34 18.54 18.28 8.60 8.26 6.52 6.11

(b) Experiments with �max = 1 (long memory in aggregate variable)

10 21.41 21.07 17.02 16.19 13.78 12.80 19.27 19.22 16.37 15.47 13.47 12.51

50 17.86 17.59 12.74 12.81 8.91 9.54 19.73 19.22 14.33 12.85 10.16 8.66

100 18.04 17.83 12.20 12.29 8.39 8.98 19.54 18.84 14.44 12.83 10.49 8.75

200 17.75 17.45 11.82 11.94 7.83 8.53 20.36 19.93 14.22 12.54 10.23 8.48

Notes: The aggregate estimator is based on the aggregate AR(p) process. The disaggregate estimator is obtained by

aggregating of the e¤ects of the macro shock on individual units, as in (38). Lags in the aggregate and the underlying

disaggregate regressions are chosen by AIC criterion with the maximum lag set equal to the integer part of
p
T and

4, respectively. Details of Monte Carlo design are described in Subsection 6.2.
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6.3 Experiments with neighborhood e¤ects

To allow for neighborhood e¤ects we used the following data generating process

y1t = �1y1;t�1 + 
1ft + u1t, (41)

and

yit = �iyi�1;t�1 + �iyi;t�1 + 
ift + uit, for i = 2; 3; 4; :::; N , (42)

where each unit, except the �rst, has one left neighbor (yi�1;t�1). The lagged coe¢ cients, � =

(�1; �2; :::; �N )
0, the factor loadings, 
 = (
1; 
2; :::; 
N )

0, the unobserved common factor, ft, and the

micro innovations, ut = (u1t; u2t; :::; uNt)0, are generated as before. The neighborhood coe¢ cients,

�i, are generated as IIDU (0; 1� �i), for i = 2; 3; :::; N , to ensure bounded variances as N ! 1.

Speci�cally, k�k1 � j�ij+ j�ij < 1, where (see Pesaran and Chudik (2010))

� =

0BBBBBBBBBB@

�1 0 0 � � � 0

�2 �2 0 � � � 0

0 �3 �3 0

...
...

. . . . . .
...

0 0 �N �N

1CCCCCCCCCCA
.

The focus of the experiments is on the estimation of the aggregate e¤ects of a macro shock. The

aggregate estimator, ~g (s) ; is computed as before. Own lags and the coe¢ cients corresponding to

the neighboring unit in the disaggregate estimator bg (s), are consistently estimated using regressions
similar to (39), but augmented with neighboring units,

yit =

piX
`=1

�i`yi;t�` +

piX
`=1

�i`yi�1;t�` + �i0�yt +

qiX
`=1

�i`�yt�` + �it, for i = 2; 3; :::; N . (43)

Initially we used AIC criterion to select the lag orders, pi and qi (with the maximum lag set to 4).

But we encountered unstable roots in the dynamics of the disaggregate speci�cation. We switched

to the the Schwarz Bayesian Criterion (SBC), and obtained stable roots. The results below are

based on SBC .
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6.3.1 E¤ects of micro shocks in the experiments with neighborhood e¤ects

Before presenting the results of the macro shocks, it is interesting to see if the inclusion of neighbor-

hood e¤ects in the disaggregated model has had any signi�cant impact on the importance of micro

shocks for the aggregate variable. According to Proposition 2 the inclusion of neighborhood e¤ects

should not a¤ect the outcomes if N is su¢ ciently large and the cross section dependence induced

by the neighborhood e¤ects is weak. The impulse responses of the e¤ects of a unit shock to u1t

on �ywt; given by hw (s; 1) in (28), for di¤erent values of N are displayed in Figure 5. As compared

to the estimates without neighborhood e¤ects (in Figure 2), the inclusion of neighborhood e¤ects

generates more persistence, but as expected the e¤ects of the micro shock on the aggregate variable

become negligible as N increases.

Figure 5: E¤ects of a micro shock on the aggregate variable in experiments with
neighborhood e¤ects
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This �gure plots function hw (s; 1) de�ned by (28) for di¤erent values of N in the experiments with neigh-

borhood e¤ects.

6.3.2 Estimation results for experiments with neighborhood e¤ects

The consequence of the left neighbor in this set-up is that it is not straightforward to analytically

calculate the optimal aggregate function g (s). Nevertheless, it is straightforward to numerically

compute the e¤ects of a macro shock, given by gw (s) and de�ned by equation (25). Figure 6

displays the estimates of the aggregate estimator, ~g (s) ; the disaggregate estimator, bg (s), and gw (s)
computed using w = N�1 (1; 1; :::; 1)0 ; for N = 200 and T = 100. Similarly to the experiments

without neighborhood e¤ects, there is a signi�cant bias in the estimation of the aggregate e¤ects of
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macro shocks. These e¤ects are underestimated, particularly at longer horizons. The disaggregate

estimator performs only marginally better in terms of bias as compared to the aggregate estimators

at longer horizons.

Table 3 provides summary statistics (bias and RMSE) for di¤erent choices of N and T . These

results suggest that estimation of aggregate e¤ects of macro shocks is subject to greater sampling

uncertainty when neighborhood e¤ects are present, as compared to the results reported in Table

2. The performance of aggregate and disaggregate estimators is very similar, with the disaggregate

estimator doing marginally better at longer horizons.

We also computed the disaggregate estimator, bg (s) ; based on the regressions without neighbor-
hood units, to evaluate how the missspeci�cation of neighbors could a¤ect the results. The omission

of neighborhood units from the disaggregate regressions seems to have little adverse e¤ects on the

performance of the disaggregate estimator.

Figure 6: The e¤ects of a macro shock on the aggregate variable for the experiments
with a common factor and neighborhood e¤ects, T = 100, and N = 200
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The solid thick black line represents the true value, gw (s), the disaggregate estimator is represented by the

thick dashed blue line, bg (s), and the aggregate estimator is represented by the thin solid red line, ~g (s).
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Table 3: Bias and RMSE of aggregate and disaggregate estimators (averaged over
horizons s = 1 to 12 and s = 13 to 24) of the e¤ects of a unit macro shock on the
aggregate variable. (Experiments with common factors and with neighborhood e¤ects,
for di¤erent values of N and T ).

Bias (�100)
Estimates averaged over horizons from s = 1 to 12 Estimates averaged over horizons from s = 13 to 24

NnT 50 100 200 50 100 200
~g bg ~g bg ~g bg ~g bg ~g bg ~g bg

(a) Experiments with �max = 0:9

10 -13.68 -13.63 -6.17 -7.31 -1.68 -3.58 -14.05 -11.70 -10.07 -7.83 -6.93 -4.47

50 -17.89 -17.99 -9.31 -11.10 -4.70 -7.14 -18.01 -11.08 -12.70 -7.38 -7.99 -4.10

100 -17.94 -17.80 -9.15 -10.10 -4.36 -6.28 -17.89 -10.46 -13.03 -6.94 -7.99 -3.74

200 -18.22 -17.67 -8.96 -9.60 -4.25 -5.82 -18.84 -9.85 -12.81 -6.50 -7.25 -3.38

(b) Experiments with �max = 1 (long memory in aggregate variable)

10 -16.51 -16.96 -6.41 -9.34 -1.10 -5.82 -24.04 -21.33 -17.61 -14.57 -12.13 -10.05

50 -21.31 -21.63 -11.45 -14.13 -5.02 -9.80 -28.92 -22.78 -21.83 -17.18 -13.59 -11.48

100 -22.15 -21.67 -11.57 -13.22 -5.49 -9.13 -30.37 -24.83 -22.27 -17.86 -13.53 -11.53

200 -22.29 -21.43 -12.02 -12.99 -5.62 -8.57 -31.59 -26.66 -22.07 -18.17 -13.26 -11.21

RMSE (�100)
(a) Experiments with �max = 0:9

10 24.66 23.36 17.93 16.52 13.83 12.43 24.51 22.80 16.17 13.65 12.22 9.76

50 24.63 24.19 16.34 16.97 11.36 12.39 25.64 23.56 19.11 15.42 13.73 10.82

100 24.26 24.01 15.84 16.15 10.32 11.21 28.20 25.79 19.21 16.10 13.75 11.07

200 23.98 23.55 15.05 15.30 9.63 10.37 26.36 24.53 19.13 16.28 13.48 10.99

(b) Experiments with �max = 1 (long memory in aggregate variable)

10 28.46 27.65 20.59 19.56 15.65 15.36 35.22 34.28 26.10 22.60 19.19 16.90

50 28.31 28.45 19.06 20.83 12.67 15.67 38.46 35.15 28.82 24.05 19.91 16.85

100 28.04 28.04 18.23 19.68 11.87 14.55 38.74 34.91 28.58 24.21 20.15 16.81

200 27.98 27.86 18.07 19.21 11.44 13.80 39.38 35.71 28.53 24.48 19.59 16.41

Notes: The aggregate estimator, ~g (s), is computed as impulse response function based on the estimated aggregate

AR(p) process. The disaggregate estimator, bg (s), is given by aggregation of the e¤ects of a macro shock on individual
units, and is de�ned in (38). Own lags and coe¢ cients corresponding to the neighboring unit are estimated using

the regression given by (43). Lags in the aggregate regression are chosen by AIC criterion with the maximum lag set

equal to the integer part of
p
T , and lags in the underlying disaggregate regressions are chosen by SBC criterion with

the maximum lag of 4. Details of Monte Carlo design are described in Subsection 6.3.

35



7 In�ation Persistence: Aggregation or Common Factor Persis-

tence

Proper understanding of aggregate in�ation behavior and how it relates to individual prices at

the micro level is crucial for the conduct of monetary policy. Prices at the micro level are known

to be relatively �exible, whereas at the aggregate level the overall rate of in�ation seems to be

quite persistent. In a recent paper, using individual category price series, Altissimo et al. (2009)

conclude that "...the aggregation mechanism explains a signi�cant amount of aggregate in�ation

persistence." (p.231). In this section we investigate the robustness of this conclusion by estimating

a factor augmented high dimensional VAR model in disaggregate in�ation series, where the relative

contributions of aggregation and common factor persistence can be evaluated. We also consider the

way the two sources of persistence interact and get ampli�ed in the process. We use the same data

set as the one used by Altissimo et al. so that our respective conclusions can be compared more

readily.6 We show that dynamic heterogeneity as well as persistent common factors are needed for

explaining the observed persistence of the aggregate in�ation. Dynamic heterogeneity alone can not

explain the persistence of the aggregate in�ation, rather it is the combination of factor persistence

and cross section heterogeneity that seem to be responsible for the high persistence of aggregate

in�ation as compared to the persistence of the underlying individual in�ation series.

7.1 Data

The in�ation series for the i-th price category is computed as yit = 400 � [ln (pit)� ln (pi;t�1)],

where pit is the seasonally adjusted consumer price index of unit i at time t. Units are individual

categories of the consumer price index (e.g. bread, wine, repairs, medical services,...) and the time

dimension is quarterly covering the period 1985Q1 to 2004Q2, altogether 78 quarterly observations

per price category. We have data on 85 categories in Germany, 145 in France and 168 in Italy. The

aggregate in�ation measure is (annualized quarterly) computed as ywt =
PN
i=1wiyit, where N is

the number of price categories and wi is the weight of the i-th category in the consumer price index.

The empirical analysis is conducted for each of the three countries separately. Country subscripts

are, however, omitted to simplify the notations. No micro regressors are included in the analysis,

6We are grateful to Altissimo et al. for providing us with their data set.
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and all measures of persistence reported below are therefore unconditional.

7.2 Disaggregate price relations without a common factor or neighborhood ef-

fects

We begin our empirical investigation by considering benchmark autoregressive processes without

allowing for any strong cross section dependence amongst the di¤erent price categories. We consider

separate AR(pi) processes and allow the lag order, pi, to di¤er across i,7

yit =

piX
`=1

�i`yi;t�` + uit. (44)

The optimal aggregate function (9), under the assumption that micro models are generated by (44)

with weakly cross sectionally dependent innovations uit, reduces to

�ywt =

1X
s=1

as�t�s + vwt. (45)

The objective is to see if the persistence of the aggregate in�ation as measured by as, can be

explained in terms of the heterogeneity of �i` across i. It is clear that the persistence of aggregate

in�ation must match that of the underlying series if �i` = �`, for all i. To this end, we estimate

GIRFs for the aggregate in�ation using the above disaggregate and aggregate speci�cations. The

aggregate macro shock in the case of the disaggregate in�ation equations is de�ned as the composite

shock, w0ut, where w is the vector of weights in the CPI basket, and for comparability with the

aggregate model it is calibrated on impact to be equal to the standard error of the innovations in

the aggregate model. For the derivations of the GIRFs see Section 5.

7.2.1 Estimation results

The �t of the estimated disaggregate relations is in most cases relatively high, and the average

values for the adjusted R2 over the di¤erent product categories are 49%, 36% and 43%, for Germany,

France and Italy, respectively. The number of lags in the aggregate AR model is chosen by AIC

with maximum lag set equal to the integer part of
p
T , and the number of lags in the disaggregate

price relations is chosen by SBC criterion with maximum lag 4.
7An intercept is also included in the AR regressions, but omitted for expositional simplicity.
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Figure 7 displays the e¤ects of a unit shock in the aggregate model and the average aggregate

e¤ects of micro shocks using the disaggregate model. For all the three countries considered, the

latter estimates are much less persistent as compared to the persistence of shocks using the aggregate

model. This is in contrast to the Monte Carlo results obtained in the case of the experiments without

a common factor. This could be due to the fact that the errors of the di¤erent micro equations

are assumed to be weakly dependent, whilst in reality there might exist strong error cross section

dependencies that impact the aggregate model and renders the individual micro relations mis-

speci�ed as a result of possible missing unobserved common factors. The possibility that there are

missing factors in the micro relations will be investigated below.

A similar conclusion is also reached if we consider the distributed lag coe¢ cients of the op-

timal aggregate equation, (45), estimated using aggregate and disaggregate speci�cations. These

estimates are displayed in Figure 8, and show similar patterns as in Figure 7, with the aggregate

estimators being much more persistence than the disaggregate estimators.8

8To allow easier comparisons, in Figure 8 the variance of the shocks are normalized to unity in the MA represen-
tations so that a0 and its estimates have the same value as the impulse response functions on impact.
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Figure 7: IRF of the aggregate model and IRF of the average micro and macro shocks
in the disaggregate model based on the price relations without neighborhood e¤ects
and without common factors.
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IRF of the aggregate model is represented by thin red line and IRF of an average micro shock is shown by

thick dashed blue line.
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Figure 8: Distributed lag coe¢ cients fasg of the optimal aggregate equation based on
the price relations without neighborhood e¤ects and without common factors
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The disaggregated estimates bas are represented by thick dashed blue line, and the aggregate estimates ~as
are represented by thin solid red line.

7.3 Micro relations with common factors and neighborhood e¤ects

Following Chudik and Pesaran (2010), we now investigate the possibility that there are missing

factors or neighborhood e¤ects in the micro relations. Selecting neighboring units tends to be

subjective. Here we categorize individual units into a small sets of products that are close substitutes

and are generally close in terms of their characteristics . For example, spirits, wine and beer are

assumed to be neighbors. A complete list of �neighbors�for Germany is provided in the Appendix

B. An alternative possibility would be de�ne neighbors in terms of their proximity as measured by

�ows of transactions between di¤erent commodity categories using input-output tables. But based

on the Monte Carlo experiments reported earlier, misspeci�cations of neighboring units might not

be that serious if the object of the exercise is to estimate the persistence of shocks on the aggregates.

With this in mind we shall not pursue the input-output metric, although we acknowledge that it

might be worth further investigation.

40



Let Ni be the index set neighbors for unit i, and de�ne the following local averages

yit =
1

jNij
X
j2Ni

yjt = s
0
iyt; i = 1; 2; :::; N; (46)

where jNij is the number of neighbors of unit i, assumed to be small and �xed as N ! 1, si is

the corresponding N � 1 sparse weights vector with jNij nonzero elements. yit represents the local

average of unit i. No unit is assumed to be dominant in the sense discussed by Pesaran and Chudik

(2010).

We follow Pesaran (2006) and its extension to dynamic panels in Pesaran and Chudik (2010),

and model the e¤ects of unobserved common factors by mean of cross section averages, at the

national and sectoral levels. Accordingly, we use an economy wide average, �yt = N�1PN
j=1 yjt,

and the sectoral averages

�y�t =
1

jS�j
X
j2S�

yjt = w
0
�yt; for � 2 ff; g; sg; (47)

where S� is the index set of units belonging to sector � = food and beverages sector (f), goods sector

(g) and services sector (s), jS�j is the number of units in sector �, and w� is the corresponding

sectoral weights vector. This set up allows us to accommodate up to four unobserved common

factors.

The following regressions are estimated by least squares for the price category i belonging to

sector �, (intercepts are included but not shown)9

yit =

piX
`=1

�ii;`yi;t�` +

pniX
`=1

�i`yi;t�` +

�piX
`=0

hi`�yt�` +

p�iX
`=0

h�i`�y�;t�` + uit; for i 2 S�: (48)

Similar equations are also estimated for energy price categories, but without sectoral averages. It

is useful to re-write equation (48) in the following way,

yit = �ii(L)yi;t�1 + �i(L)yi;t�1 + h
0
i(L)�t + uit; (49)

9We also estimated the individual price equations, (48), without the sectoral e¤ects and obtained similar results.
The inclusion of the sectoral e¤ects introduces additional persistence at the aggregate level, which seems to be
important particularly in the case of Italy.
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where �t = (�yt; �yft; �ygt; �yst)
0 is the 4 � 1 vector of national and sectoral cross section averages,

and h0i(L) = [hi (L) ; hfi (L) ; hgi (L) ; hsi (L)]. Stacking equations (49) for i = 1; 2; :::; N gives the

following VAR model,

yt = �(L)yt�1 +H(L)�t + ut; (50)

where

�(L) =

0BBBB@
�11(L) � � � 0

. . .

0 � � � �NN (L)

1CCCCA+
0BBBB@

�1(L)e
0
N1

...

�N (L)e
0
NN

1CCCCA : (51)

H(L)�t is a proxy for the e¤ects of unobserved common factor(s). Lags (pi; p
n
i ; �pi; and p

�
i ) are

chosen by SBC with the maximum lag set equal to 2.

7.3.1 Estimation results

Table 4 summarizes the statistical signi�cance of the various coe¢ cients in the price equations

(48), for Germany, France and Italy. The parameters are grouped into those characterizing own

lagged e¤ects (�ii`), lagged neighborhood e¤ects (�i`), country e¤ects (hai`), and sectoral e¤ects

(h�i`, for � = f; g; s). All four types of e¤ects are statistically important, although perhaps not

surprisingly own lag e¤ects are more important statistically as compared to the other e¤ects. At

the 5% signi�cance level, own lag e¤ects are signi�cant in 90 cases out of 112 in Germany, 111

cases out of 169 in France, and 158 out of 209 cases in Italy, representing 65%-80% share of all

estimated own lagged e¤ects. Local and cross section averages are statistically signi�cant in about

12-25% of cases, which is above the 5% nominal size of the tests. These results suggest that

the benchmark AR micro relations that ignore common factors and the neighborhood e¤ects are

most likely missspeci�ed. Idiosyncratic shocks are likely to dominate the micro relations, which

could explain the lower rejection rate for the cross section averages, compared to the own lagged

coe¢ cients. As before, the �t is relatively high in most cases. The average R
2
is 56% in Germany,

48% in France, and 51% in Italy (median values are 61%, 52%, and 54%, respectively).
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Table 4: Summary statistics for individual price relations, (48), with common factor(s)
and neighborhood e¤ects.

No. of No. of signi�cant

estimated coef. coef (at the 5% nominal level) Share

Results for Germany

Own lagged e¤ects 112 90 80.4%

Lagged neighborhood e¤ects 66 16 24.2%

Sectoral e¤ects 182 34 18.7%

Country e¤ects 190 33 17.4%

Results for France

Own lagged e¤ects 169 111 65.7%

Lagged neighborhood e¤ects 166 23 13.9%

Sectoral e¤ects 302 57 18.9%

Country e¤ects 314 38 12.1%

Results for Italy

Own lagged e¤ects 209 158 75.6%

Lagged neighborhood e¤ects 173 38 22.0%

Sectoral e¤ects 335 54 16.1%

Country e¤ects 345 73 21.2%

Using the estimates of �ii(L) and �i(L), for i = 1; 2; :::; N , we compute eigenvalues of the

companion matrix corresponding to the VAR polynomial matrix�(L) de�ned in (51). The modulus

of eigenvalues for Germany and France is bounded by 0.93 and all eigenvalues with the exception of

one are bounded by 0.86 in Italy. If the support of the eigenvalues distribution does not cover the

unit circle then regardless of the functional form of the cross section distribution of the eigenvalues,

heterogeneity in eigenvalues can not generate long memory in the aggregates.

We compute the aggregate e¤ects of micro and macro shocks along the lines explained in Section

5. To this end we estimate a VAR model in �t = (�yat; �yft; �ygt; �yst)
0, and use it in conjunction

with (50) to compute the impulse responses of the shocks to the factors and to the individual

in�ation equations. The aggregate e¤ects of micro shocks are computed as before by aggregating

the individual e¤ects of shocks across units using the CPI aggregation weights. On impact the

e¤ects of aggregate and macro shocks are set equal to one standard error of the AR model for the

aggregate in�ation.

The estimated aggregate e¤ects of macro shocks are reported in Figure 9 and are found to

be highly persistent. The e¤ects of shocks to factors are very similar, irrespective of whether the

national or a composite of the four sectoral factors is shocked. Figure 9 also shows that the degree of

persistence of the aggregate in�ation is in fact underestimated by the aggregate model, as compared
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to the e¤ects of the factor shocks in the disaggregate model. In contrast, the e¤ects of a composite

micro shock decays much faster than the factor shocks, or the e¤ects of the shocks in the aggregate

model. It is the combination of factor persistence and the dynamics of individual in�ation series

that yield the highly persistence e¤ects of macro shocks shown in Figure 9.

Dynamic heterogeneity alone does not seem to be su¢ cient for explaining the observed per-

sistence of the aggregate in�ation. This point is also apparent if we consider the distributed lag

coe¢ cients of the optimal aggregate equation. Figure 10 presents the estimates bas based on the
underlying micro model with neighbors and common factors and compares it with the aggregate

MA representation eas. Coe¢ cients are again scaled to match the initial impacts of the impulse
responses in Figure 9, to allow for easier comparisons. It can be observed that the disaggregate

estimates, bas, decay much faster than the aggregate estimates, eas. The disaggregate estimates of
the distributed lag coe¢ cients decay even faster than the corresponding estimates in the benchmark

AR micro model, which is not surprising and could be due to the omission of common factors in

the benchmark model.

Figure 9: Impulse response functions of micro and macro shocks on aggregate in�ation
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The thin red line represents the IRF of the aggregate model. The other lines are based on the disaggregated

model, speci�ed by (48). The thick orange line gives the IRF of the shock to the national factor, the dashed

thick gray line represents the IRF of a composite of four sectoral shocks, and the thick dashed blue line gives

the IRF of an average micro shock in the disaggregate model.
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Figure 10. Distributed lag coe¢ cients fasg of the optimal aggregate equation based
on the individual price relations given by (48)
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The aggregate estimates, ~as; are represented by the thin red line, and the disaggregated estimates, bas; by
the thick dashed blue line.

7.4 Further discussion of the empirical results: aggregation or factor persis-

tence

Altissimo et al. (2009) reach a similar conclusion in terms of the importance of common factor for

the behavior of the aggregate in�ation, albeit using a di¤erent set of techniques. They �nd one

unobserved common factor and estimate the following model in order to study the implications of

aggregation for the persistence of aggregate in�ation.

yit =  i (L) "t + 'i (L)uit;

where  i (L) and 'i (L) are unit-speci�c polynomials, "t is a serially uncorrelated unobserved com-

mon factor innovation orthogonal to uit, and uit is IID
�
0; �2i

�
. Altissimo et al. �nd that the

persistence of aggregate in�ation originates from the unobserved common component,  i (L) "t;

and that the persistence of the aggregate idiosyncratic component,
PN
i=1wi i (L)uit, is relatively

small. The latter �nding is in line with our results, which shows that bas seems to decline at a
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geometric rate in Figure 10. Their analysis focuses on the roots of  i (L), but does not study

whether one could decompose  i (L) into the products 
i (L) � (L), in which case one could write

 i (L) "t = 
i (L) � (L) "t = 
i (L) ft where ft = � (L) "t could be viewed as a serially correlated

unobserved common factor. As a result they attribute any possible persistence that might be due

to the common factor(s) to the aggregation process. Accordingly, they �nd that the empirical

distribution of the maximal autoregressive roots (the modulus of the roots of  i (L)) peaks at one,

which leads them to argue that the aggregate in�ation presents a long memory behavior and that

the aggregation mechanism explains a signi�cant amount of aggregate in�ation persistence.

Our exercise allows us to evaluate how the two sources of persistence - dynamic heterogeneity

and the unobserved common factor persistence - combine and get ampli�ed in the process. Results

in this paper suggests that the interaction of the persistence in common factors and the eigenvalues

heterogeneity is the key to understanding the slow response of the aggregate in�ation to macro

shocks.

As pointed out by Granger (1987), a relatively benign common factor at the micro level becomes

pertinent by aggregation at the macro level and therefore understanding where this common factor

comes from and why it is (or is not) persistent would be important for a proper understanding of

consumer price in�ation behavior and for the conduct of monetary policy.

8 Conclusion

This paper extends the literature on aggregation of linear dynamic models in a number of directions.

After a brief review of Granger�s contribution to the aggregation literature, we derive conditions

under which an optimal aggregate equation exists in the case of large dynamic panels with individual

speci�c regressors and common factors. We also derive conditions under which aggregation errors

are of second order importance in empirical analysis, and show how these conditions are related

to the long memory property of aggregate time series models highlighted by Granger. We also

consider the problem of identi�cation of some of the distributional features of micro parameters

from aggregate relations, and derive impulse response functions for the analysis of the e¤ects of

micro and macro shocks, allowing for weak cross section dependence in the errors of the underlying

dynamic panel data model. Some of the theoretical �ndings are illustrated by a series of Monte
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Carlo simulations. An empirical application investigating the sources of the persistence of aggregate

in�ation is also presented. It is shown that the observed persistence of aggregate in�ation could be

due to a combination of factor persistence and dynamic heterogeneity in the underlying micro model

of in�ation. It is hoped that the present paper initiates further research in the area of aggregation

in economics. There are clearly important links between aggregation and pooling of information in

dynamic heterogenous panels which are worthy of further investigations. The present paper should

be seen as a small step in this direction.
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A Mathematical Appendix

Proof of Proposition 1. Using (5) with M ! 1, �nite initial value w0y�M , and under Assumption 6,

which is su¢ cient for maxi j�ij < 1, we have

�ywt =
1X
s=0

w0�s (Bxt�s + �f t�s) +
1X
s=0

w0�sut�s; (A.1)

Therefore, in view of (9), (10), and (A.1) we must also have

vwt �
1X
s=0

(w0�sBxt�s � bs�xw;t�s)�
1X
s=0

(w0�s�f t�s � c0sft�s)�
1X
s=0

w0�sut�s
q:m! 0. (A.2)

It is now easy to see from (A.2) that vwt
q:m! 0 when results (12)-(14) hold. We establish results (12)-(14)

below.

To prove (12), consider

V ar

 1X
s=0

w0�sut�s

!
= V ar

"
E

 1X
s=0

w0�sut�s j�
!#

+ E

"
V ar

 1X
s=0

w0�sut�s j�
!#

.

Since E(ut j� ) = 0, for all t,

V ar

 1X
s=0

w0�sut�s

!
= E

"
V ar

 1X
s=0

w0�sut�s j�
!#

.

Also since ut is serially uncorrelated (by Assumption 2),




V ar
 1X
s=0

w0�sut�s j�
!




 =






w0

 1X
s=0

�s�u�
0s

!
w






 � kwk2 k�uk2 1P
s=0

k�sk2 :

Hence

E

"
V ar

 1X
s=0

w0�sut�s

!#
� kwk2 k�uk2

1P
s=0

E k�sk2 :

But kwk2 = O
�
N�1�, and limN!1N�1 k�uk2 = 0; by the weak cross section dependence of innovations

ut postulated in Assumption 2. Also
P1

s=0E k�
sk2 < K under Assumption 6. Hence, it follows that

limN!1 V ar (
P1

s=0w
0�sut�s) = 0; and noting that E(ut j� ) = 0, for all t, completes the proof of (12).

To establish (13), consider

V ar

 1X
s=0

w0�s�f t�s �
1X
s=0

c0sft�s

!
= V ar

"
E

 1X
s=0

w0�s�f t�s �
1X
s=0

c0sft�s j
t

!#
+

+E

"
V ar

 1X
s=0

w0�s�f t�s �
1X
s=0

c0sft�s j
t

!#
. (A.3)

But Assumption 1 implies that E (�s� j
t ) = E [cs(�)� j
t ] = �Nc
0
s (see the arguments used to derive

equation (8)). Therefore

E (w0�s�f t�s � c0sft�s j
t ) = 0, (A.4)
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and the �rst summand on the right side of (A.3) is zero. Consider now the second term on the right side of

(A.3). Let V� = ��E (�) = ���N
0 and note that under Assumption 6, V� is distributed independently

of �. Hence Cov (
P1

s=0w
0�s�n


0ft�s;
P1

s=0w
0�sV�ft�s j
t ) = 0, and

V ar

 1X
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w0�s�f t�s j
t

!
= V ar
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w0�sV�ft�s j
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!
+ V ar

 1X
s=0
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!
. (A.5)

But
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(A.6)

E (V�) = 0 by construction, and

E

 1X
s=0

w0�sV�ft�s j
t;�
!
= 0. (A.7)

In addition, using the matrix norm inequality and noting that


V�ft�sf

0
t�sV

0
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 � kV�k2


ft�sf 0t�s

 for any

realization of random variables in V�, we have
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Taking expectation of (A.8) and noting that kwk2 = O
�
N�1�, E �kV�k2 j
t;�

�
= O (1) (by Assumption 6,

which postulates that 
i are independently and identically distributed across i, and 
i is independently dis-

tributed of�), suptE (kftf 0tk) = E (kftf 0tk) < K by Assumption 5, and
P1

s=0E
�
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�
< K by Assumption

6, we have
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which together with results (A.6) and (A.7) implies

E
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Next we consider the second summand on the right side of (A.5). We have
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But
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Furthermore, using the independence of �i and �j for i 6= j, we have
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where #i is the i-th element # = w0P; and �i is the i-th element of � = P�1�N . Note that jasj � ja`j for s > `

and jas+`j � jasa`j. Therefore jas+` � asa`j � 2 jas+`j � 2 jasj. Taking expectations of (A.11) and also noting
that Assumptions 5 and 6 imply existence of a positive constant K <1, such that

P1
`=0 jE (
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K, where the constant K does not depend on s,t or `, we have
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where
P1

s=0 jasj < K; under Assumption 3, and
PN

i=1 �
2
i �
2
i = O

�
N�1� under Assumption 7 and by the

granularity conditions on w. It follows from (A.10) and (A.12) that

E

"
V ar
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w0�s�f t�s j
t
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! 0, as N !1,

which, together with result (A.4) imply that
P1

s=0w
0�s�f t�s �

P1
s=0 c

0
sft�s

q:m:! 0, as N ! 1. This
completes the proof of result (13).

Result (14) is established in a similar way as results (12)-(13). Under Assumption 4, the micro regressors

are given by the factor model (11). Assumptions about the factors gt and the loadings �i are the same as

the assumptions about the factors ft and the loadings 
i. Therefore, using similar arguments as in the proof
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of result (13), it can be shown that
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s=0

 
w0�sB

mxX
k=1

��kgkt � bs
mxX
k=1

E (�k) gkt

!
q:m:! 0, as N !1, (A.13)

where ��k = (�1k; �2k; :::; �Nk)
0. The same assumptions are postulated for innovations vxit and uit. In

particular, the innovations vxit are cross sectionally weakly dependent (and uncorrelated). Hence, using

similar arguments as in the proof of result (12), it can be shown that

1X
s=0

(w0�sBvxt)
q:m:! 0, as N !1. (A.14)

Using results (A.13) and (A.14), and noting that �xwt
q:m:! E (xit) completes the proof of (14).

Proof of Proposition 2. Taking the absolute values of (28) and applying the matrix norm inequality

yield

jhw (s;aN )j � kwk k�sk





 �uaN

(a0N�uaN )
1=2






 , for s = 0; 1; 2; :::, (A.15)

and for every possible realization of the random elements in the matrix �. �u = V ar (ut) is symmetric and

nonnegative de�nite and therefore there exists a matrix C such that �u = CC
0.




 �uaN

(a0N�uaN )
1=2






 =




C C0aN

kC0aNk





 � kCk kC0aNkkC0aNk
� kCk (A.16)

The assumption of weak cross section dependence of micro innovations implies existence of a positive constant

� > 0 such that kCk = [�1 (�u)]1=2 = O
�
N (1��)=2�. Using inequality (A.16) in (A.15), taking expectations,

and using the condition E k�sk < K, yields

E jhw (s; j)j � K kwk kCk = O
�
N� �

2

�
,

for any j = 1; 2; 3:::, and any s = 0; 1; :::, where kwk = O
�
N�1=2� by granularity conditions in (2). Result

(29) now easily follows.
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B Groups de�ning neighboring product categories

Group List of product categories
1 Meat; Fish and seafood; Milk, cheese and eggs

2 Fruit; Vegetables

3 Sugar, jam, honey, chocolate and confectionery; Food products n.e.c.

4 Co¤ee, tea and cocoa; Mineral waters, soft drinks, fruit and vegetable juices

5 Spirits; Wine; Beer

6 Clothing materials; Garments; Other articles of clothing and clothing accessories; Footwear including repair

7 Services for the maintenance and repair of the dwelling; Water supply; Refuse collection;

Sewerage collection; Other services relating to the dwelling n.e.c.

8 Electricity; Gas; Liquid fuels; Solid fuels; Heat energy

9 Repair of furniture, furnishings and �oor coverings; Repair of household appliances; Repair of audio-visual, photographic

and information processing equipment; Maintenance and repair of other major durables for recreation and culture

10 Major household appliances whether electric or not and small electric household appliances; Glassware, tableware

and household utensils; Tools and equipment for house and garden; Non-durable household goods.

11 Pharmaceutical products; Other medical products; therapeutic appliances and equipment

12 Medical services; paramedical services; Dental services; Hospital services; Out-patient services

13 Motor cars; Motor cycle; Spares parts and accessories for personal transport equipment; Bicycles

14 Passenger transport by railway; Passenger transport by road; Passenger transport by air; Passenger transport by sea

and inland waterway; Combined passenger transport; Other purchased transport services

15 Equipment for the reception, recording and reproduction of sound and pictures; Photographic and cinematographic

equipment and optical instruments; Information processing equipment; Recording media

16 Recreational and sporting services; Cultural services

17 Books; Newspapers and periodicals; Miscellaneous printed matter; stationery and drawing materials

18 Restaurants, cafés and the like; Canteens

19 Package holidays; Accommodation services

20 Jewelry, clocks and watches; Other personal e¤ects

21 Insurance connected with the dwelling; Insurance connected with health; Insurance connected with transport

Other insurance
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